Atomic layer deposition for modification of surface properties

Dr. Emma Salmi and Kari Härkönen

Services

-

One Stop for All ALD

Development Services Coating Services

NAME AND

Industrial Equipment

Customer Services

Outline

- Atomic layer deposition
- Surface modification with atomic layer deposition
 - Case I
 - TiN_x , $Ti(AI)C_x$ and $Ti(AI)N_xC_y$ on 304L SS
 - Case II
 - Al doped ZnO
- Conclusions

Atomic layer deposition

5

- Precision thin film deposition technique based on chemical vapor deposition
- First industrial application was electroluminescent displays
 - Manufactured in Finland since the 1980's
 - Currently by Lumineq (Beneq)

ALD – Mechanism

5 nm

a,0,

10/21/2019

R.G.

Gordon

ı et al.,

Chem.

Vap

Deposition,

9 (2003) 73

ALD – Advantages

- Conformality and large area uniformity
- Control over thickness and composition
- Low defect density
- Reproducability
- Low thermal budget

Y. Zhang et al., Surf. Coat. Technol., 205 (2011) 3334

V. Pore et al., J. Am. Chem. Soc. 131 (2009) 3478

ALD – Available materials

							the p	oure eler	nent has	been gr	own							
	1	_	CO	mpound	s with O				compou	unds wit	h F						-	18
	1 H	2	CO	compounds with N				other compounds					13	14	15	16	17	2 He
	3 Li	4 Be	co	mpound	s with S		compounds with Te						B B	6 C	Ń	8	9 F	10 Ne
2013	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 Al	14 Si	15 P	¹⁶ S	17 CI	18 A r
2013	19 K	20 Ca	21 Sc	22 11	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	³² Ge	33 As	₃₄ Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
	55 Cs	Ba	57 La*	72 Hf	73 Ta	74 W	⁷⁵ Re	76 Os	77 Ir	78 Pt	⁷⁹ Au	80 Hg	81 TI	82 Pb	83 Bi	84 P o	85 At	⁸⁶ Rn
	87 Fr	⁸⁸ Ra	89 Ac**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 D s	111 Rg	112 Cn	December 2010					
Lantha			oids*	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
al., J. Appl. Phys. 113 (2013) 0213	5., Actinoids** 301			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 E s	100 Fm	101 Md	102 No	103 Lr	

© Beneq 2016

ALD – Applications

Electroluminescent displays

Permeation barriers

Protective coatings

Optical coatings

Uncoated nSILVER® -coated

Case I

- TiN_x , $Ti(AI)C_x$ and $Ti(AI)N_xC_y$ thin films
 - Substrate 304L stainless steel
 - ALD film growth
 - Precusors
 - TiN_x from titanium tetrachloride (TiCl₄) and ammonia (NH₃)
 - $Ti(AI)C_x$ from titanium tetrachloride ($TiCI_4$) and trimethyl aluminium (TMA)
 - Ti(Al)N_xC_y from TiCl₄, TMA and NH₃
 - Deposition temperature 430 °C
 - Coating thickness 100 nm

TiN_x, Ti(Al)C_x and Ti(Al)N_xC_y – Microscopy 2 Beneq

- Uncoated 304L stainless steel
 - Rough surface morphology

1:2.5

TiN_x , $Ti(AI)C_x$ and $Ti(AI)N_xC_y$ – Microscopy

TiN_x, Ti(AI)C_x and Ti(AI)N_xC_y – Hydrophobicity 3 Beneq

- The O₂ plasma treatment was used to oxidise the film surface
 - ➡ Hydrophilicity

Sample	Post-treatment	Contact angle (DI H ₂ O)
Uncoated 304L	-	65°
TiN _x	-	0°
Ti(Al)C _x	-	45°
Ti(Al)N _x C _y	-	28°
TiN _x	O ₂ plasma	0°
Ti(Al)C _x	O ₂ plasma	0°
Ti(Al)N _x C _y	O ₂ plasma	0°

TiN_x , $Ti(AI)C_x$ and $Ti(AI)N_xC_y$ – Corrosion

• 10% HCl @ 22 °C

Sample	Post-treatment	Corrosion rate / mm/year
Uncoated 304L	-	0.63
TiN _x	-	0.48
Ti(Al)C _x	-	0.50
Ti(Al)N _x C _y	-	0.12
TiN _x	O ₂ plasma	0.59
Ti(Al)C _x	O ₂ plasma	0.30
Ti(Al)N _x C _y	O ₂ plasma	0.10

(Beneq TiN_x , $Ti(AI)C_x$ and $Ti(AI)N_xC_y$ – Corrosion Ti(Al)N_xC_y – As deposited TiN_x – As deposited Ti(Al)C_x – As deposited 1:2.5 1:2.5 1:2.5 1:50 1:50 1:50

TiN_x, Ti(Al)C_x and Ti(Al)N_xC_y – Corrosion

(Beneq

Case II

- Al doped ZnO
 - Transparent n-type semiconductor
 - ALD film growth
 - Al₂O₃ deposited from trimethyl aluminium (TMA) and H₂O
 - ZnO deposited from diethyl zinc (DEZ) and H₂O
 - Deposition temperature 225 °C
 - Different concentrations of Al was doped into ZnO
 - Pure ZnO
 - AZO 49:1 (49 × ZnO + 1 × Al₂O₃)
 - AZO 24:1 (24 × ZnO + 1 × Al₂O₃)
 - AZO 12:1 (12 × ZnO + 1 × Al₂O₃)
 - Pure Al_2O_3

P. Bajernee at al., J. Appl. Phys. 108 (2010) 043504.

Al:ZnO – Refractive index

• The composition can be digitally controlled

TABLE I. List of samples used for obtaining data showing the ratio of Zn to Al cycles used to obtain various Al doping concentration. Here, n is the number of DEZ-DI water cycles inserted between consecutive TMA-DI water cycles. This constitutes a single supercycle. By repeating the supercycles, estimated total thickness is obtained. The true total thickness is based on measurement using spectroscopic ellipsometry. The estimated at. % Al is calculated by the method shown in text. The true at. % Al doping is obtained via EDX.

Sample	n	Thickness of one supercycle (nm)	Total number of supercycles	Estimated total thickness (nm)	True total thickness (nm)	Estimated Al (at. %)	True at. % Al (via EDX)
ZnO	N/A	N/A	N/A	100.0	103.0	0	0
Zn:Al=40:1	40	8.1	12	97.2	101.0	1.2	1.5
Zn:Al=20:1	20	4.1	24	98.4	97.3	2.4	3.0
Zn:Al=13:1	13	2.7	37	99.9	95.0	3.7	7.3
Zn:Al=10:1	10	2.1	48	100.8	96.8	4.8	8.1
Zn:Al=8:1	8	1.7	59	100.3	96.8	5.9	10.9
Zn:Al=6:1	6	1.3	77	100.1	89.1	7.7	17.3
Zn:A1=5:1	5	1.1	91	100.1	86.3	9.1	24.6

P. Bajernee at al., J. Appl. Phys. 108 (2010) 043504.

Al:ZnO – Transmission

- The films have over 80 % transmission in the visible range
- The unique properties of ALD can be utilized to model a thickness giving the optimized transmission

Al:ZnO – Electrical resistance

- Doping with Al greatly improves the conductivity of ZnO
 - Donor electrons
- An optimum is achieved at pulsing ratio 24:1
 - Too much Al resulted in insulating Al₂O₃ clusters

) Beneq

- Atomic layer deposition is a versatile tool for precision coating
- ALD TiN_x, Ti(AI)C_x and Ti(AI)N_xC_y coatings can be used to protect stainless steel
 - Ti(Al)N_xC_y gives the best performance
- ALD enables control over Al doping into ZnO thin films
 - Lowest resisitivity is achieved with 24:1 Zn:Al pulsing ratio
 - Transmission over 80 % over the visible range

Thank you

www.beneq.com emma.salmi@beneq.com

