Low Temperature Plasma-enhanced ALD for SiO₂ Using CO₂

Zhen Zhu^{1,2}, Perttu Sippola², Oili M.E. Ylivaara³, Saoussen Merdes¹, Kenichiro Mizohata⁴, Emma Salmi¹, Chiara Modanese², Marisa Di Sabatino⁵, Hele Savin²

¹Beneq Oy, Finland

²Department of Electronics and Nanoengineering, Aalto University, Finland

³VTT Technical Research Centre of Finland Ltd., Finland

⁴Physics Department, University of Helsinki, Finland

⁵Department of Materials Science and Engineering, Norwegian University of Science and Technology, Norway

Outline

- Motivation
- Methods
- Results
 - Film Growth
 - Film Characterization
- Conclusions

Thermal sensitive materials

Moisture/oxygen sensitive materials

- Deposition temperature of ALD SiO₂
 - 200 °C or more
 - <100°C
 - Catalyzed ALD
 - Plasma-enhanced ALD
 - Precusor development
- Commonly used oxidants
 - Water-based
 - O₂-based

Methods

- Deposition
 - TFS 200 with remote plasma option (capacitively coupled 13,56 MHz RF source)
 - Precursors:
 - BTBAS [bis(tertiary-butylamino)silane; C₈H₂₂N₂Si]
 - CO₂ plasma

\searrow	\checkmark
HN	NH
	Si
Н	Н

Parameter	Range
Process temperature (°C)	90-200
Plasma power (W)	50 and 180
BTBAS pulse time (s)	0.05-0.5
BTBAS purge time (s)	0.5-3
CO ₂ plasma exposure time (s)	1-15
CO ₂ plasma purge time (s)	0.5-3

Methods

- Characterization
 - Ellipsometry
 - Glow discharge optical emission spectroscopy (GDOES)
 - Time-of-flight elastic recoil detection analysis (TOF-ERDA)
 - X-ray reflectivity (XRR)
 - Wafer curvature measurement

Film Growth

• The effect of BTBAS

Film Growth

• The effect of CO₂ plasma

Film Growth

• The effect of deposition temperature

Film Characterization-density

The film density of ~2.1 g/cm³ is in a good agreement with values reported in earlier studies of O_2 based PEALD with a temperature range of 50-300 °C [1-3]

Dingemans et al., J. Electrochem. Soc., 159, 2012
Putkonen et al., Thin Solid Films, 558, 2014
Shestaeva et al., Appl. Opt., 2017, 2017

Film Characterization-composition

Film Characterization-residual stress

Conclusions

- CO_2 was confirmed as a promising oxidant for growing low temperature PEALD SiO₂ films.
- The films had a saturated GPC of 1.15 Å/cycle, a low level of impurities (~3 at.% for H, ~0.17 at.% for N and <0.05 at.% for C), a reasonable film density of ~2.1 g/cm⁻³, and a low tensile residual stress of 30 Mpa.
- The evaluated pulse and purge times of precursors suggested a possibility for having the saturated growth with a very short cycle time of 4.1 s.

From research to industry

Thank you!

