# Investigation of PEALD SiO<sub>2</sub> thin films by rf-GDOES

#### Zhen Zhu<sup>1,2</sup>, <u>Chiara Modanese</u><sup>1</sup>, Perttu Sippola<sup>1</sup>, Marisa Di Sabatino<sup>3</sup>, Hele Savin<sup>1</sup>

<sup>1</sup> Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland <sup>2</sup> Beneq Oy, Espoo, Finland

<sup>3</sup> Dept. Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway



Aalto University School of Electrical Engineering



#### $\Box$ NTNU

Norwegian University of Science and Technology

#### One Stop for All ALD





Development Services Coating Services

NAME AND

Industrial Equipment

Customer Services

# **Motivation - PEALD**

- Thermal ALD (atomic layer deposition) is a thinfilm growth method with many advantages:
  - conformality
  - ultra-thin film
  - repeatability
  - ...
- PEALD (plasma enhanced ALD) provides further advantages:
  - It broadens applicable processing conditions (purge times, precursors, ...)
  - It opens for a wider range of material properties (thermally sensitive substrates, ...)
  - It shortens the deposition time







Aalto University School of Electrical Engineering

**INTINU** Norwegian University of Science and Technology



# **Motivation – PEALD-SiO<sub>2</sub>**

- SiO<sub>2</sub> thin-films are a well-studied material.
- Nevertheless, properties of SiO<sub>2</sub> deposited by PEALD under varying process parameters are not widely understood:
  - Effect of plasma power?
  - Effect of plasma temperature?
  - Effect of plasma composition?

alto University

ngineering

of Electrical

- Aim of our study:
  - tackle the challenge of determining the chemical composition of PEALD-SiO<sub>2</sub> thin-layer (d < 200 nm) to understand the effect of plasma power

Norwegian University of

Science and Technology

2. use a fast technique for routine analysis





TFS 200, Beneq

10/21/2019



# **Introduction – rf-GDOES**

- rf-GDOES (radio frequency glow discharge optical emission spectroscopy) is an effective analytical technique for thin film analysis
- Several advantages:
  - very good depth resolution (~ nm)
  - wide dynamic range (12 orders) →
    detection limits (down to 1ppm)
  - multi-elemental analysis
  - fast analysis (few seconds-few minutes)
  - simple sample preparation
- Main limitation (not hindering analysis of ALD thin films):
  - mm-range lateral resolution



Photo and schematic diagram of the analytical GD source



Aalto University School of Electrical Engineering

NTNU Norwegian University of Science and Technology



Horiba, 2014

5

#### **Materials**



sputtered crater after GDOES measurement

- SiO<sub>2</sub> thin-films deposited on Czochralski Si substrates
- Deposition by O<sub>2</sub> based PEALD and under varying plasma powers:
  - 50 W
  - 180 W
  - 300 W



Aalto University School of Electrical Engineering Norwegian University of Science and Technology



#### **Methods**

- PEALD-SiO<sub>2</sub> deposition  $\rightarrow$  Beneq TFS 200 reactor ٠
- PEALD-SiO<sub>2</sub> compositional profiles (qualitative)  $\rightarrow$  rf-GDOES ٠ Horiba Profiler2:
  - plasma power: 35 W \_
  - μs-pulsed discharge \_
  - pre-cleaning and flushing (surface cleaning) \_
  - total sputtering time < 20 s —



PEALD-SiO<sub>2</sub> thickness  $\rightarrow$  GDOES ? ٠

Electrical



www.horiba.com



Norwegian University of Science and Technology



10/21/2019

### **Qualitative elemental profiles**

Example of elemental profiles for the PEALD-SiO<sub>2</sub> deposited at 180 W



→ The matrix and main impurity elements were successfully analysed



Aalto University School of Electrical Engineering



# **Chemical composition**

Intensities of elemental emission lines were integrated over the SiO<sub>2</sub> thin-film depth



- Intensity difference in Si, O and H is within the accuracy of the technique (±10%)
- Clear intensity difference in C and N  $\rightarrow$  lower content with increasing plasma power ٠



ngineering

Aalto Universitv Electrical Norwegian University of Science and Technology



#### **Structural properties**

- Sputtering rate calculation:
  - same rate assumed for all films → sputtering time divided by the thickness measured by ellipsometry → calculation of the sputtering rate





Norwegian University of Science and Technology



10/21/2019

### **Structural properties**

- Sputtering rate calculation:
  - same rate assumed for all films  $\rightarrow$  sputtering time divided by the thickness measured by ellipsometry  $\rightarrow$  calculation of the sputtering rate
- The sputtering rate decreases with increasing plasma power:



- film thickness measured by ellipsometry is similar for all films (148nm @50W, 146nm @180W and 145nm @300W) → reason for difference in sputtering time ?
- it seems to be influenced by film density  $\Leftrightarrow$ measured density increase of ~ 5% with increasing plasma power ( $\geq$  180W) (from XRR)





Norwegian University of Science and Technology



• The thickness of a transparent thin film, *d* can be calculated as\*:



$$d = \frac{k \times \lambda}{2 \times n}$$

- k is the number of oscillations of emission line i in the thin film
- $\lambda$  is the wavelength of emission line *i*
- *n* is the refractive index of the thin film at wavelength *i*





Norwegian University of Science and Technology



 Comparison of thickness calculated from GDOES vs from reference techniques (ellipsometry and XRR):

| Method       | PE-ALD SiO <sub>2</sub> thickness | PE-ALD plasma power |      |      |
|--------------|-----------------------------------|---------------------|------|------|
|              |                                   | 50W                 | 180W | 300W |
| GDOES        | d <sub>o</sub> (nm)               | 129                 | 128  | 128  |
|              | d <sub>si</sub> (nm)              | 129                 | 128  | 127  |
| Ellipsometry | d from ellipsometry (nm)          | 148                 | 146  | 145  |
| XRR          | d from XRR (nm)                   | 148                 | 147  | 147  |

- → Note that  $\frac{\lambda}{2 \times n}$  = 93 nm (corresponding to the thickness for k = 1)  $\Leftrightarrow$  good agreement with 100 nm value as suggested by Dorka *et al.*\*
- → Thus, for thin films (d < 200 nm), the relevance of the accuracy of k is dominant over the refractive index for the calculation of d.





NTNU Norwegian University of Science and Technology



\*Dorka, Kunze, Hoffmann, JAAS 2000, 15, 873-876

#### Summary

- GDOES analysis provided important information on the chemical and structural properties of PEALD SiO<sub>2</sub> thin films, with good depth resolution and fast analysis.
- Detection limits are sufficient for the analytical purposes.
- GDOES analysis of thin (< 200 nm), transparent layers is challenging.
- The calculation of the thickness is severely affected by the number of oscillations k in the elemental lines, which cannot be rounded to the closest integer for small k values.







#### Thank you for your attention!

The authors acknowledge the European Research Council [EU's FP7 Programme ERC, Grant Agreement No. 307315] and the Micronova Nanofabrication Centre of Aalto University.



• The thickness of a transparent thin film, d can be calculated as\*:

$$d = \frac{k \times \lambda}{2 \times n}$$

- *n* is the refractive index of the thin film at wavelength *i* 

- Example of the simulated refractive index, n of the sample deposited at 180 W.
- The fitting is done on the measured values in the visible range.



• Influence of the number of oscillations within the film thickness:

| SiO,              | 50W   | 180W  | 300W  |
|-------------------|-------|-------|-------|
| k@130nm (O line)  | 4     | 4     | 4     |
| n@130nm (O line)  | 2.018 | 2.035 | 2.030 |
| k@288nm (Si line) | 1.38  | 1.38  | 1.37  |
| n@288nm (Si line) | 1.545 | 1.552 | 1.556 |

Note that *n* is assumed to be constant throughouot the whole film thickness

→ Thus, for thin films (d < 200 nm), the relevance of the accuracy of k is dominant over that of the refractive index for the calculation of d.

### **Infrared spectrometry**

- Qualitative analysis
- FTIR does not show clear differences among the thin films
- Transmission is also influenced by the Si substrate → limitation for possibility of evaluation of spectra



#### One Stop for All ALD





Development Services Coating Services

NAME AND

Industrial Equipment

Customer Services